CONDOMÍNIO DOM BOSCO SÃO CARLOS - SP

CÁLCULOS HIDROLÓGICOS E HIDRÁULICOS

PROJETO: DRENAGEM DE ÁGUAS PLUVIAIS

TRECHO: FUNDOS DO CONDOMÍNIO DOM BOSCO

SUMÁRIO

- 1. OBJETIVO
- 2. CÁLCULO DA VAZÃO DE PROJETO
 - 2.1. PARÂMETROS DE PROJETO
 - 2.1.1. Bacia de contribuição
 - 2.2. MÉTODO RACIONAL
 - 2.2.1. Tempo de concentração
 - 2.2.2. Duração da chuva crítica
 - 2.2.3. Período de retorno (T_R)
 - 2.2.4. Intensidade da chuva crítica (i_{t, Tr})
 - 2.2.5. Coeficiente de escoamento superficial ("run off")
 - 2.2.6. Cálculo da vazão de cheia
- 3. CÁLCULOS HIDRÁULICOS
 - 3.1. PARÂMETROS DE DIMENSIONAMENTO
 - 3.2. CÁLCULO DAS ESTRUTURAS HIDRÁULICAS
 - 3.2.1. Cálculo dos tubos de concreto
 - 3.2.2. Cálculo da escada hidráulica
 - 3.2.3. Cálculo da caixa de dissipação
 - 3.2.4. Cálculo do canal trapezoidal

1. OBJETIVO

O objetivo deste relatório é apresentar os cálculos hidrológicos e hidráulicos para as estruturas de drenagem que irão conduzir as águas pluviais provenientes do Condomínio Dom Bosco e áreas contribuintes adjacentes até o deságue no Córrego Tijuco Preto, em trecho após a região das nascentes, no Município de São Carlos-SP.

Figura 1: Imagem de satélite do trecho de intervenção obtida no Google Earth Pró em 06/09/2021.

2. CÁLCULO DA VAZÃO DE PROJETO

Para os cálculos das vazões foram utilizadas as publicações do DAEE: "Manual de Cálculo das Vazões Máximas, Médias e Mínimas nas Bacias Hidrográficas do Estado de São Paulo", publicado em 1994, e também o "Guia Prático para Projetos de Pequenas Obras Hidráulicas", publicado em 2005.

Como a área de contribuição é menor que 2,0 km², foi adotada a metodologia de cálculo do Método Racional.

2.1. PARÂMETROS DE PROJETO

2.1.1. BACIA DE CONTRIBUIÇÃO ou ÁREA DE DRENAGEM

A seção de controle adotada foi na caixa de passagem existente na parte mais baixa do sistema viário do Condomínio, de onde sai toda a água captada na área de drenagem do projeto em direção ao córrego.

Figura 2: Delimitação da área de contribuição sobre imagem do Google Earth Pró em 19/09/2021. Em amarelo, contorno da área de drenagem; azul: talvegue principal.

Foram obtidos os seguintes valores:

- Área total = 49.537m² = 0.04954Km² = 4.954Ha
- Talvegue = 352,00m
- $-\Delta h = 892,00 879,00 = 13,00m$

2.2. MÉTODO RACIONAL

onde:

Q = vazão de cheia, em L/s;

C = coeficiente de escoamento superficial;

i = intensidade de chuva, em mm/min;

A = área da bacia de contribuição, em ha;

D = coeficiente de distribuição da chuva. (para A < 50ha, D = 1)

2.2.1. TEMPO DE CONCENTRAÇÃO

Foi utilizada a fórmula do método "Califórnia Culverts Practice", recomendado pelo DAAE, a seguir:

$$t_c = 57 \text{ x } (L^3 / \Delta h)^{0.385}$$
, onde:

t_c = tempo de concentração, em minutos;

Resultando: $t_c = 6,36min$

2.2.2. DURAÇÃO DA CHUVA CRÍTICA

Na aplicação do Método Racional, considera-se a duração da precipitação intensa de projeto igual ao tempo de concentração da bacia.

No caso de t_c resultar num valor inferior a 10 minutos, deve-se adotar $t_c=10$ minutos.

2.2.3. PERÍODO DE RETORNO (TR)

O período de retorno está relacionado com o grau de segurança que se deseja proporcionar à obra. Portanto, pela importância da obra foi adotado período de retorno TR = 10 anos.

2.2.4. INTENSIDADE DA CHUVA CRÍTICA (it.TR)

Com os valores de t_c e TR pode-se determinar a chuva intensa que será utilizada para o cálculo da vazão.

A equação utilizada foi a da INMET-83762, localizada em São Carlos-SP.

A equação é obtida na publicação do DAEE: "PRECIPITAÇÕES INTENSAS NO ESTADO DE SÃO PAULO", de maio de 2018.

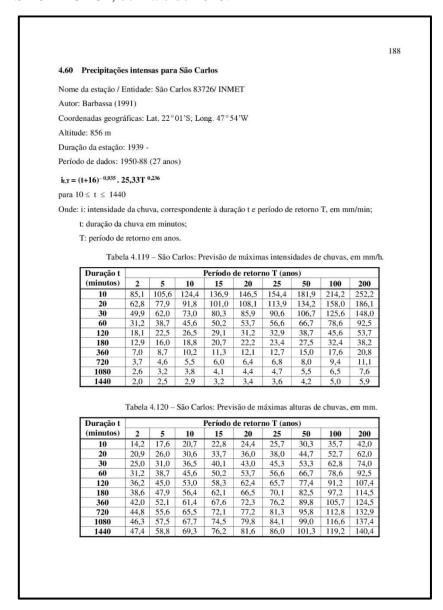


Figura 3: Precipitações intensas para São Carlos.

$$i_{t,T} = (t+16)^{-0.935} \cdot 25,33T^{0.236}$$

Assim, obtemos:

i = 2,073mm/min = 124,39mm/h

2.2.5. COEFICIENTE DE ESCOAMENTO SUPERFICIAL ("RUN OFF")

O coeficiente de escoamento superficial (C) do solo foi adotado de acordo com o "Guia Prático para Projetos de Pequenas Obras Hidráulicas", observando-se as características atuais e futuras da bacia, sendo adotado o valor de C para área totalmente urbanizada: C=0.70

2.2.6. CÁLCULO DA VAZÃO DE CHEIA

A vazão de cheia (Q) foi calculada pela fórmula:

$$Q = 166,67 \times C \times i \times A \times D$$

 $Q = 166,67 \times 0,70 \times 2,073 \times 4,954 \times 1,0 = 1.198,15 \text{L/s} \sim 1,20 \text{m}^3/\text{s}$

3. CÁLCULOS HIDRÁULICOS

O sistema proposto para a condução da vazão calculada é constituído dos seguintes elementos:

- Caixa de passagem de concreto armado, que receberá toda a vazão proveniente da caixa de concreto existente localizada no início da área de lazer do condomínio;
 - Linha de tubos de concreto Ø800mm;
 - Escada hidráulica de gabiões;
 - Caixa de dissipação de energia de colchão reno e gabiões caixa;
 - Canal trapezoidal em colchão reno.

Para o dimensionamento das estruturas propostas foram utilizadas técnicas consagradas, empregadas usualmente nos projetos de drenagem urbana.

Foi seguido o roteiro sugerido no "Guia Prático para Projetos de Pequenas Obras Hidráulicas", Cap.2.

Equação de Manning:

$$V = 1/n \times R_H^{2/3} \times i^{1/2}$$

onde:

V = velocidade média, em m/s

n = coeficiente de rugosidade de Manning:

i = declividade média, em m/m

R_H = raio hidráulico, em m

$$Q = A_m/n \ x \ R_H^{2/3} \ x \ i^{1/2}$$

3.1. PARÂMETROS DE DIMENSIONAMENTO

Os parâmetros para o dimensionamento hidráulico das estruturas foram:

Concreto e tubos de concreto

- Coeficiente de rugosidade de Manning (n): 0,015
- Velocidade mínima de 0,80 m/s;
- Velocidade máxima de 5,00 m/s;
- Declividade mínima de 1%;
- Recobrimento mínimo das tubulações de 0,70m.

Gabiões

- Coeficiente de rugosidade de Manning (n): 0,028
- Velocidade máxima de 2,50 m/s;
- Declividade mínima de 1%.

3.2. CÁLCULO DAS ESTRUTURAS HIDRÁULICAS

O cálculo e dimensionamento das estruturas hidráulicas foram simulados e verificados pelo software SisCCoH, desenvolvido em parceria entre a UFMG e Pimenta de Ávila Consultoria. Este software é amplamente utilizado para o desenvolvimento de cálculos aplicados à Engenharia Hidráulica.

3.2.1. CÁLULO DOS TUBOS DE CONCRETO

Adotado 1 linha de tubos de concreto Ø800mm, com inclinação de 2%.

Para a análise hidráulica da linha de tubos, primeiramente tomou-se a vazão total da área de contribuição. Com este valor, efetuam-se os cálculos com o auxílio do software SisCCoH 1.0:

SisCCoH - Sistema para Cálculos de Componentes Hidráulicos		
DOM BOSCO - Tubo Ø800mm - i=2%		
Dados de Entrada		
1,2		
0,8		
0,015		
0,02		
Resultados		
0,34		
0,015		
0,02		
0,8		
1.693		
0,5123236		
0,6404		
1,2		
3,53		

A profundidade do escoamento e a velocidade do fluxo são compatíveis com a vazão de projeto.

A seguir, verificamos a vazão máxima da tubulação proposta:

SisCCoH - Sistema para Cálculos de Componentes Hidráulicos		
Seções Regulares		
DOM BOSCO - Tubo Ø800mm, seção plena		
Dados de Entrada		
Profundidade (m)	0,79	
Diâmetro (m)	,8	
Coeficiente de Manning	0,015	
Declividade (m/m)	0,02	
Resultados		
Área molhada (m²)	0,501	
Coeficiente de Manning	0,015	
Declividade (m/m)	0,02	
Diâmetro (m)	0,8	
Número de Froude	0,643	
Profundidade do fluxo (m)	0,79	
Relação Y/D	0,9875	
Vazão (m³/s)	1.696	
Velocidade (m/s)	3.382	

Portanto a linha de tubos de projeto está apta a conduzir a vazão prevista.

3.2.2. CÁLULO DA ESCADA HIDRÁULICA

Para vencer o desnível entre a linha de tubos e o nível do córrego, está prevista escada hidráulica dissipadora de energia, de colchão reno e gabiões caixa parcialmente revestidos com concreto. A escada tem largura 2,0m. O comprimento de cada degrau é 2,0m e altura 1,0m.

A verificação da escada foi feita com o auxílio do software SisCCoH 1.0:

SisCCoH - Sistema para Cálculos de Componentes Hidráulicos	
Escoamento em Degraus - Regime Nappe Flow	
Escada Gabião caixa H=1,0m, degrau l=2m, h=1m	
Dados de Entrada	
Vazão - Q (m³/s)	1,2
Largura do Canal - B (m)	2
Altura dos Degraus - S (m)	1
Comprimento dos Degraus - I (m)	2
Desnível do Trecho - Hd (m)	2
Número de Degraus	2
Resultados	
Parâmetros Hidráulicos	1
Ângulo com a Horizontal (graus)	26.565
Vazão (m³/s.m)	0,6
Profundidade Crítica (m)	0,332
Número de Queda	0,037
Dados para Dimensionamento	
Comprimento de Queda - Ld (m)	1.762
Comprimento do Ressalto - L (m)	3.783
Altura da Parede (m)	0,953
Energia Residual (m)	1.009
Energia Dissipada (m)	1,49
Energia Máxima (m)	2.498
Eficiência (%)	59.627
Profundidade Final do Escoamento (m)	0,146
Velocidade Final (m/s)	4.115
Froude Final	3,44

A escada proposta está em condições de atender a vazão de projeto.

3.2.3. CÁLULO DA CAIXA DE DISSIPAÇÃO

Na saída da escada hidráulica está prevista uma caixa de dissipação de energia, com fundo de gabião tipo colchão reno e laterais em gabiões caixa. Com comprimento 4,0m, base 2,0m e altura das laterais 1,0m, inclinação de fundo 1% em direção ao córrego.

Abaixo, a verificação hidráulica da caixa, através do SisCCoH 1.0:

SisCCoH - Sistema para Cálculos de Componentes Hidráulicos		
Seções Regulares		
Caixa de dissipação retangular calha 2,0 x 1,0m		
Dados de Entrada		
Vazão (m³/s)	1,2	
Coeficiente de Manning	0,028	
Declividade (m/m)	0,01	
Largura (m)	2	
Resultados		
Área molhada (m²)	0,783	
Coeficiente de Manning	0,028	
Declividade (m/m)	0,01	
Largura superficial (m)	2	
Número de Froude	0,782	
Profundidade do fluxo (m)	0,391	
Vazão (m³/s)	1,2	
Velocidade (m/s)	1.533	

A caixa está dimensionada para receber a vazão esperada.

3.2.4. CÁLULO DO CANAL TRAPEZOIDAL

Após a caixa de dissipação, a água segue em direção ao córrego através de um canal trapezoidal de colchão reno de 2,0m de base e laterais de 2,0m com inclinação 1V:2H. Este canal terá inclinação de 1% e fará a concordância em nível com o leito do córrego.

Primeiramente, a verificação da profundidade do fluxo e velocidade:

SisCCoH - Sistema para Cálculos de Componentes Hidráulicos		
Seções Regulares		
Canal trapezoidal dissipador reno base 2m, lateral 1V-2H (27°)		
Dados de Entrada		
Vazão (m³/s)	1,2	
Coeficiente de Manning	0,028	
Declividade (m/m)	0,01	
Largura inferior (m)	2	
Inclinação lateral (h/v)	2	
Resultados		
Área molhada (m²)	0,852	
Coeficiente de Manning	0,028	
Declividade (m/m)	0,01	
Inclinação lateral (h/v)	2	
Largura superior (m)	3.289	

Largura do fundo (m)	2
Número de Froude	0,883
Profundidade do fluxo (m)	0,3222144
Vazão (m³/s)	1,2
Velocidade (m/s)	1.408

A profundidade do fluxo encontrada é menor do que a profundidade máxima do canal e a velocidade do fluxo é compatível com o material de revestimento. O canal projetado tem plenas condições de conduzir o escoamento previsto.

A seguir a verificação do canal a seção plena:

SisCCoH - Sistema para Cálculos de Componentes Hidráulicos		
Seções Regulares		
Seção plena		
0,447		
0,028		
0,01		
2		
2		
Resultados		
1.294		
0,028		
0,01		
2		
3.788		
2		
0,919		
0,447		
2.1771		
1.683		

O canal trapezoidal é suficiente para escoar com segurança a vazão prevista.

Portanto, todas as estruturas hidráulicas projetadas são capazes de receber e conduzir de forma apropriada as vazões determinadas em projeto.

Este é o nosso parecer		São Carlos, novembro de 2021
	Eng. Paulo H. Silva Leme	
	CREA-SP 5061408430	

Silva Leme Engenharia